SELF-DUALITY IN THE CASE OF S0O(2n, F)

DUBRAVKA BAN

ABSTRACT. The parabolically induced representations of special
even-orthogonal groups over p-adic field are considered. The main
result is a theorem on self-duality, which gives a condition on initial
representations, if induced representation has a square integrable
subquotient.

1. INTRODUCTION

The problem of construction of noncuspidal irreducible square inte-
grable representations of classical p-adic groups was studied by M. Tadi¢
in [T3]. He showed ([T3], Lemma 4.1) that among irreducible cuspi-
dal representations of general linear groups only the self-dual play a
role in the construction of irreducible noncuspidal square integrable
representations of symplectic and odd-orthogonal groups.

In this paper, we show the same property for groups SO(2n, F') (The-
orem 6.1). In the second section, we review some notation and results
from the representation theory of general linear groups. In the third
section, we describe standard parabolics of SO(2n, F'). Some properties
of induced representations of SO(2n, F') are given in the fourth section.
The fifth section exposes the Casselman square integrability criterion
for SO(2n, F'). In the sixth section, a theorem on self-duality is stated
and proved.

By closing the introduction, I would like to thank Marko Tadi¢, who
initiated this paper and helped its realization. I also thank Goran Muié
for his helpful comments regarding this paper.
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2. PRELIMINARIES

Fix a locally compact nonarchimedean field F' of characteristic dif-
ferent from 2. Let G be a group of F-points of a connected reductive
F-split group. Suppose that G is reductive and split.

Fix a minimal parabolic subgroup Fy C G and a maximal split torus
Ap C F.

Let P be a parabolic subgroup, containing F,. We call such a group
a standard parabolic subgroup. Let U be the unipotent radical of P.
Then, by [BZ], there exists a unique Levi subgroup M in P containing
Ap.

Let P be a standard parabolic subgroup of G, with Levi decompo-
sition P = MU. For a smooth representation o of M, we denote by
ig.m(0) the parabolically induced representation of G by ¢ from P,
and for a smooth representation 7 of G, we denote by ry;g(m) the
normalised Jacquet module of © with respect to P.

For a smooth finite length representation m we denote by s.s.(7) the
semi-simplified representation of 7. The equivalence s.s.(m1) = s.5.(72)
means that m; and ms have the same irreducible composition factors
with the same multiplicities, and we write m; = mo. We write m; = 7y
if we mean that m; and 7y are actually equivalent.

Now we shall recall some results from [BZ] and [Z] of the represen-
tation theory of general linear groups.

For the group GL(n, F'), we fix the minimal parabolic subgroup
which consists of all upper triangular matrices in GL(n, F'). The stan-
dard parabolic subgroups of GL(n, F') can be parametrized by ordered
partitions of n: for @ = (ny,... ,ny) there exists a standard parabolic
subgroup (denote it in this section by P,) of GL(n,F) whose Levi
factor M, is naturally isomorphic to GL(ny, F') X - -+ X GL(ng, F).

Let 71, mo be admissible representation of GL(ny, F'), GL(ng, F') resp.,
n1 + no = n. Define

L X T2 = 4G L(n,F),M(n1+4ns) (T1 ® T2).

Denote v = |det|. We have the following criterion for irreducibility
([Z], Propositionl.11):

Proposition 2.1. Let 7,1 = 1,2, be irreducible cuspidal representa-
tion of GL(n;, F).
1. If my 22 vy and me 22 vy (in particular if ny # na), then m X o
18 irreducible.
2. Suppose that ny = ng and either m; = vy or o = vmy. Then the
representation m; X mwo has length 2.
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3. PARABOLIC INDUCTION FOR SO(2n, F)

The special orthogonal group SO(2n, F'), n > 1, is the group
SO@2n, F) = {X € SL(2n,F) | "XX = Iy} .

Here 7 X denotes the transposed matrix of X with respect to the second
diagonal. For n =1 we get

SO, F) = { {3 - }

SO(0, F) is defined to be the trivial group.
Denote by Ap the maximal split torus in SO(2n, F') which consists
of all diagonal matrices in SO(2n, F'). Hence,

Ag = {dz’ag(a:l,... T, T ,:Bl_l)‘:vi EFX} = (F)™.

n

AEFX}%FX.

Fix the minimal parabolic subgroup F, which consists of all upper
triangular matrices in SO(2n, F').

The root system is of type D,; the simple roots are
a = e —eiy1, forl<i<n-—1,
o, = €ep_1-+e,.

The set of simple roots is denoted by A.

Let

_ O

€ 0(2n, F).

O =

1

We use the same letter s to denote the authomorphism of SO(2n, F)

defined by s(g) = sgs*.

Let 0 = A\{a;},i € {1,...,n}, and let Py = MpUy be the maximal
parabolic subgroup determined by 6.
If i #n — 1, then

My = {dz'ag(g, h, "g7') | g € GL(i, F), h € SO2(n — z),F)}
In this case, we denote My by M(;), and we have
Mg = GL(i, F) x SO(2(n — 1), F).
Ifi=n—1, then
My = s(My,).
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Now let 0 = A\ {a,—1, v, }. Then
My = {diag(g,h, "97") | g € GL(n —1,F), h € SO(2, F) = GL(1, F)},

SO

12

My = GL(n—1,F)x SO(2,F),
My = GL(n—1,F)x GL(1, F),

and we denote My by M,_1) or by M, 1).

We shall now describe the set of standard parabolic subgroups of
SO(2n, F'). Let o = (ny, ...,ng) be an ordered partition of non-negative
integer m < n. Then there exists a standard parabolic subgroup, denote
it by P, = M,U,, such that

M, = {dz’ag(gl, e Gk by Tt Tar ) | i € GL(ng, F), h € SO(2(n — m),F)}.
Hence,
M, = GL(ny, F) x GL(n2, F) x -+ x GL(ng, F') x SO(2(n —m), F).
Mention that if ny 4+ -+ +ni =n — 1, then
M = {dz'ag(gl, e Gk by Tt Tor ) | g € GL(ng, F), h € SO(2, F) = GL(l,F)} ,
so we may consider
M = GL(n1, F) x GL(ng, F) x --- x GL(ng, F') x SO(2, F),
or
M = GL(n1, F) x GL(ng, F) x -+ x GL(ng, F') x GL(1, F).
Hence, we can assign
Mvr+— a = (n,...,ng),
or
M +— o = (ng,...,np, 1).

Besides the subgroups of type P, = M,U,, there is also another type
of standard parabolic subgroups. They can be described as

M = s(M"),

where M’ = M,, for some a = (ny,...,ng), ny + -+ + ng = n.

Now, take smooth finite length representations w of GL(n, F') and o
of SO(2m, F). Let P,y = M,)Up,) be a standard parabolic subgroup
of G = SO(2(m +n), F). Hence, M,y = GL(n,F) x SO(2m, F), so
T ® o can be taken as a representation of M,). Define

TXO =iy, c(T® o).
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Note that in the case G = SO(2, F'), the induction does nothing, since
and for a smooth representation 7 of GL(1, F'), we have

Tx1l=nm.

It follows from [BZ], Prop.2.3, that for smooth representations m; of
GL(ny, F), m of GL(ny, F') and o of SO(2m, F') we have

T X (T2 X o) = (71 X 7)) X 0.
Let o be a finite length smooth representation of SO(2n, F'). Let a =

(nq,...,nk) be an ordered partition of a non-negative integer m < n.
Define

5a(0) = Ta,.50(2n,F)(0).

4. SOME PROPERTIES OF PARABOLICALLY INDUCED
REPRESENTATIONS OF SO(2n, F)

Let G = SO(2n,F). For m < n, let P = P, be the standard
parabolic subgroup with Levi factor M = GL(m, F')xSO(2(n—m), F).
Then

s(P)=P, s(M)=M, sU)=U.
The following lemma can be proved directly:

Lemma 4.1. For a smooth finite length representation m of GL(m, F')
and a smooth finite length representation o of SO(2(n—m), F'), m < n,
we have

s(mxo)=7mxs(o).

Proposition 4.2. Let m be a smooth finite length representation of
GL(m, F) and o be a smooth finite length representation of SO(2(n —
m), F'). Then
Txo=s"(rxo).
Particularly,

1. If m is even, then

TXOo=TMX0;
2. If m < n is odd, then

Txo=mxs(o);
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3. If m = n s odd, then
7x1=s(mrx1l).

(Here 7 denotes contragredient representation of 7.)
Proof. Denote

j=s" : € S0O(2n, F).

Conjugation with j gives
jreo)2s"('n ' @0).

Since j(M) = s"(M) = s™(M), the groups j(P) and s™(P) are asso-
ciated, so we have by [BDK]

Txo=jrxo)=s"(7xo).

The following lemma is well-known.

Lemma 4.3. Let p be an irreducible cuspidal unitary representation
of GL(m,F) and let o be an irreducible cuspidal representation of
SOQ2L, F), I # 1. Take o € R. If (v*p) x o reduces, then p = p and
o s"(o).

Proof. Suppose first that a = 0. The Frobenius reciprocity for p x o
and p ® o gives

Homg(pxo,pxo)= Homy(rugoicu(p®o),p® o).
Now we have from the Geometric lemma [BZ]

pRo+pRs"(o), form < norm even,

S.S.(TM,GOZ'G,M(p@)O')) = { pR1, for m = n odd.

If p x o is reducible, then dim¢ Homg(p X o,p x o) > 1. It follows
p=p,o=s"(0).

Now, suppose that a # 0 and that (v*p) x o is reducible. It follows
from Proposition 7.1.3. [C] that (v¥“p) x o has a square integrable
subquotient. Therefore, (r*p) x ¢ and (¥~%*p) x ¢ have a common
subquotient, so we get v*pR0 = v~ *pR0 or V¥ pRc = v*pRs™ (o). The
first equivalence implies a = 0. Hence, we have vp® 0 = v*p® s™(0).
It follows p = p, 0 = s™(0). O
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5. SQUARE INTEGRABILITY CRITERIA FOR SO(2n, F')

We shall state the criterion that follows from the Casselman square
integrability criterion ([C], Theorem 6.5.1), and it is analogous to those
from [T3] for GSp(n, F).

Define

Bi= (1,...,1, 0,...,00eR", i<n-—2
i times
Bn-1=(1,...,1,—-1) e R",
By=(1,...,1,1) € R".
Let 7 be an irreducible smooth representation of G = SO(2n, F)).

Let P = MU be a standard parabolic subgroup, minimal among all
standard parabolic subgroups which satisfy

T’M7g(7'(') 7é 0.
Let p be an irreducible subqotient of ry (7).
If P = P,, where a = (nq,... ,ng) is a partition of m < n, then

pP=p1 Q- Qpr® o0,

where p; are irreducible cuspidal representations of GL(n;, F'), and o is
an irreducible cuspidal representation of SO(2(n —m), F'). If P is not
of that type, then

P=5(PM@ Qp1@pp®@1L) =p1 @+ R pr—1 QD s(pr ® 1),

where p; are irreducible cuspidal representations of GL(n;, F').
We have p; = v p where e(p;) € R and p¥ is unitarizable. Define

e«(p) = (e Y N N , 0,...,0).
(n) = (e(p) g (p1), \(pk)t' 3 (Pr) X )
ni times ngE ttmes n—m itimes

(This definition concerns p = p; ® -+ ® pr @ 0 as well as p = s(p; ®
R pr® 1))
If 7 is square integrable, then
(ex(p), Bny)
(6* (p)> ﬁnﬁ-nz)

> 0,
> 0,
(6*(p)>ﬁm—nk) > 0,

(6* (/0)> ﬁm) > 0.

(Here ( ,) denotes the standard inner product on R™.)
Conversely, if all above inequalities hold for any a and o as above,
then 7 is square integrable.
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The criteria implies
7 is square integrable < s(7) is square integrable,

but this equivalence can also be proved easily directly from the defini-
tion of square integrability.

6. A THEOREM ON SELF-DUALITY

Theorem 6.1. Suppose that p1, pa, ... , pr are irreducible cuspidal rep-
resentations of GL(ny, F'), ... ,GL(ng, F), resp., and o is an irreducible
cuspidal representation of SO(2l, F), 1 # 1. If py X+ - - X pp X0 contains a
square integrable subquotient, then p¥ = (p)~, for any i =1,2,... . k.

Proof. The proof paralels that used in chapter 4 of [T3].
Set ny + -+ +np =m, m+ [ =n. Denote
G = SO(2n,F),
M = M(nl,...,nk)>
p = MmMB- QP o.

Then

plx---kaNO':’éaM(p).

Let 7 be an irreducible square integrable subquotient of ig a(p). First
we shall prove the lemma under the assumption that 7 is a subrepre-
sentation of ig a(p), or, equivalently, that p is a quotient of 7y (7).
Fix any iy € {1,... .k}. Set
VY = {ie{l,... .k} |3a € Z such that p;, = 1v°p;},
Vi = {ie{l,... .k} | 3o € Z such that p;, = v°p;},
Y, = )/;8 U )/;(1)7

Ye = {l,... k}\Y.

Suppose that pji 2 (pj )~. It follows from Proposition 2.1 that for any

j(bj(/] € )/;87 jl?ji € )/;(1) and jC € ng we have
Pio X it = Pjt X Pjos Pin X Py = Pip X P
Pjo X Pj = Pir X Pjos pjo X Pj = P X l?j()?
Pjo X Pje = Pje X Pjos Pio X Pje = Py X Pio>
Pir X Pje = P X Pi1s Pir X P = Pje X Py
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If n —m > 1, then, by Lemma 4.3, p;, X 0 and p;, % o are irreducible.
Now we get from Proposition 4.2

Pjo X O = ﬁjo X "0 (0)7
Pj RO = ﬁjl X "1 (0)7
forn —m > 1, and
pjo X1 = s (ﬁjo A 1)>
pi X1 = T (ﬁjl A 1)>
for n = m. Write
Yig = {a1,... a5}, a; <ajfori<yj,

Vi o= {bi,... by}, b <bjfori<yj,

Yio = {d,... ,dp}, di<djfori<j.
If n —m > 2, then we can repeat the proof from [T3], since we have
just slightly different relations, and square integrability criteria are the

same.
Let m =n. Set a = ng, . Then

p1 XX pp N1
= Pay X X Pagy X Py X X pa Xy X X py X1

pa1x"'xpak0 X Pdy X X Pdy, X Poy X"'Xpbklﬂxsa(ﬁbkl Nl)
$¥(Pay X+ X Py X Py X X Py, X poy X X Py X P K1)
= 5%(Pay X 1 X Pagy X Py Xt X pa X Py X oy X X ppy XL,

We proceed in the same way, and finally we get

2

plx---xpkxlgs“’(palx---xpako Xﬁbkl X“'Xﬁhxpch X X Pdy, N1)>
where v =0 or 1.

In the same manner, we obtain
plx"'xpkxlgsé(phX"'Xpbkl Xﬁak() X -0 X Pay X Pdy X X Pdy,, >q1)7

where 6 = 0 or 1.

By the Frobenius reciprocity, the representations
pl = Sﬁ{(pm ®"'®pak0 ®p~bk1 Q-+ & Pby @ pay ®"'®pdkc ®1)>
,0// _ 35(,0171 ®"'®Pbk1 ®15ak0 R @ Pa; D Py ®"'®pdkc ®1)

are the quotients of corresponding Jacquet modules. Now p,, X --- X
Pay, X Poy X =+ X py, is representation of GL(u, F'), for some u < n. If
u#mn—1then (B, e.p)) = —(0u,ex(p”)). If u=n —1, then

(ﬁn—h 6*(pl)) + (ﬁm 6*(pl)) = _(ﬁn—h 6*(p”)) - (ﬁm 6*(p“))'
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Anyway, this contradicts the assumption that 7 is square integrable.

Generally, let 7 be an irreducible subquotient of i¢ . (p). By [C],
Corollary 7.2.2, there exists w € W = Ng(M)/M such that 7 is a
subrepresentation of ig p(w(p)). Let p=p1 ® - @ pp, ® 0 and w(p) =
0 ® -+ ® 0 @ 7. We apply the first part of the proof on w(p), and we

get 0 = (6%)~, i =1,2,... ., k. By [G], the sequence 01, ..., 0 is, up
to a permutation and taking a contragredient, the sequence py, ... ., p.
O

Theorem 6.2. Suppose that p1, pa, ... , pr are irreducible cuspidal rep-
resentations of GL(ny, F'), ... ,GL(ng, F), resp., and o is an irreducible
cuspidal representation of SO(2l, F), | # 1, such that py X -+ X px X 0
contains a square integrable subquotient. Further, assume that for each
unitary representation p, the number o, discussed in Lemma 4.3., sat-

isfies 2cc € Z. Then 2e(p;) € Z, for any i =1,2,... . k.
Proof. The proof is analogous to that of Theorem 6.1. O
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