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Abstract. In this paper, we consider a standard module in the subrepresentation

setting of the Langlands classification. We show that the inducing representation

appears with multiplicity one in the corresponding Jacquet module, and in fact,

it is the unique subquotient of the Jacquet module with its central exponent. As

an application, we show how this may be used to easily deduce a dual Langlands

classification–essentially, a generalization of the Zelevinsky classification for general

linear groups.

1. Introduction

The Langlands classification is a fundamental result in representation theory and

the theory of automorphic forms. It gives a bijective correspondence between irre-

ducible admissible representations of a connected reductive group G and triples of

Langlands data. It was proved by Langlands for real groups [L]. The proof for p-adic

groups is due to Borel and Wallach [B-W], and Silberger [Sil].

We consider the p-adic case, so let G denote a connected reductive p-adic group.

Let (P, ν, τ ) be a set of Langlands data in the subrepresentation setting of the Lang-

lands classification. Then P = MU is a standard parabolic subgroup of G, τ is an

irreducible tempered representation of M and ν ∈ (aM)∗− (see Section 2 for defini-

tions). Write π = L(P, ν, τ ) for the irreducible representation of G corresponding

to (P, ν, τ ). Then π is the unique irreducible representation of the corresponding

standard module, i.e., the induced representation iG,M(exp ν ⊗ τ ). We show that the
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(normalized) Jacquet module rM,G(iG,M(exp ν⊗τ )) contains exp ν⊗τ with multiplic-

ity one and has no other subquotients with central exponent ν. This is a useful result

(e.g., Lemma 3.4 of [Jan2] is essentially a special case) which was expected, but for

which there seems to be no proof available in the literature. Our main purpose here

is to fill that gap.

As an application, we prove a dual version of the Langlands classification, essen-

tially extending the Zelevsinky classification from general linear groups to connected

reductive groups (cf. [Z]). An irreducible representation θ with unitary central char-

acter is called anti-tempered if it satisfies the Casselman criterion for temperedness,

except with the usual inequalites reversed. Equivalently, θ̂–its dual under the involu-

tion of [Aub], [Be], [S-S]–is tempered. If π is an irreducible admissible representation

of G, there exists a unique triple (Q,µ, θ), with Q = LU a standard parabolic sub-

group, µ ∈ (aL)∗+ and θ an irreducible anti-tempered representation of L, such that

π is equivalent to the unique irreducible subrepresentation of iG,L(expµ ⊗ θ) (The-

orem 6.3). The growing role of duality in representation theory and its conjectured

relation with the Arthur parameterization convinced the aurthors to include this

application, especially as it contains information on the composition series (the ex-

istence of a unique irreducible subrepresentation) which is not a simple consequence

of duality. We note that this is also essentially a known result for which we do not

know of a proof in the literature.

In [K], it was noted that there is a problem with Lemma 5.3 [Sil]. We remark that

the main result in this paper can serve as a substitute for Lemma 5.3 in Silberger’s

proof of the Langlands classification.

Our proof of the Jacquet module result is essentially combinatorial in nature. By

a result of [B-Z], [Cas], we can calculate rM,G ◦ iG,M (expν ⊗ τ )–or the corresponding

exponents which appear. Our argument uses the inequalities that arise from having

ν ∈ (aM )∗− and τ tempered (the Casselman criterion) to show that any other expo-

nents which appear in rM,G ◦ iG,M (exp ν ⊗ τ ) are necessarily different. As a technical
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remark, we note that in order to carry out this analysis, the various exponents which

appear must be converted to exponents in a∗ (the dual of the Lie algebra associated

to the maximal split torus of the minimal parabolic subgroup).

For general linear groups, the Langlands classification and the Zelevinsky classifi-

cation are related by the Zelevinsky involution (cf. [Tad]). The duality of [Aub], [Be],

[S-S] generalizes the Zelevinsky involution, and may be used in a similar fashion to

construct the dual Langlands data for an irreducible admissible representation from

the (ordinary) Langlands data for its dual. One issue arises in this process: the

duality of [Aub], [Be], [S-S] is at the Grothendieck group level, so does not preserve

composition series. To show that π is the unique irreducible subrepresentation of

iG,L(expµ ⊗ θ), we note that duality does imply expµ ⊗ θ is the unique irreducible

subquotient of rL,G◦iG,L(expµ⊗θ) having its central exponent; the result then follows

from Frobenius reciprocity.

We now briefly discuss the contents of the paper section by section. In Section 2,

we introduce notation and review some background results. In Section 3, we prove

a technical lemma which describes the action of the Weyl group on certain elements

in the dual Lie algebra a∗. This result, together with a criterion for temperedness

proved in Section 4 (a variation of the Casselman criterion), is the basis for proving

the uniqueness of central characters and central exponents in Section 5. In Section

6, we apply these result to obtain the dual Langlands classification, and show that

for general linear groups, it is essentially the same as the Zelvinsky classification.

2. Preliminaries

In this section, we review some background material and notation which will be

used in what follows.

Let F be a p-adic field and G the group of F -points of a connected reductive

algebraic group defined over F . Fix a maximal split torus A in G. We denote by

W = W (G,A) the Weyl group of G with respect to A. Let Φ = Φ(G,A) be the
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set of roots. Fix a minimal parabolic subgroup P0 containing A. The choice of P0

determines the set of simple roots Π ⊂ Φ and the set of positive roots Φ+ ⊂ Φ. If

α ∈ Φ+, we write α > 0.

Let P = MU ⊂ G be a standard parabolic subgroup of G. We denote by ΠM ⊂ Π

the corresponding set of simple roots. Let AM be the split component of the center

of M , X(M)F the group of F -rational characters of M . Let

aM = Hom(X(M)F , R) = Hom(X(AM)F , R)

be the real Lie algebra of AM and

a∗
M = X(M)F ⊗Z R = X(AM )F ⊗Z R

its dual. Set a = aA, a∗ = a∗
A. We let ιM : a∗

M → a∗ (or simply ι) denote the

standard embedding and rM : a∗ → a∗
M restriction ([Sil], [B-W]). Note that we have

rM ◦ ιM = id.

There is a homomorphism (cf. [H-C]) HM : M → aM such that q〈χ,HM(m)〉 = |χ(m)|

for all m ∈ M, χ ∈ X(M)F . Given ν ∈ a∗
M , let us write

exp ν = q〈ν,HM(·)〉

for the corresponding character.

We denote by iG,M the functor of normalized parabolic induction and by rM,G

the normalized Jacquet functor. Let R(G) denote the Grothendieck group of the

category of smooth finite length representations of G. The Aubert duality operator

DG is defined on R(G) by

DG =
∑

M≤G

(−1)|ΠM |iG,M ◦ rM,G,

where the sum runs over the set of all standard Levi subgroups of G. Let π be an

irreducible smooth representation of G. We define π̂ = ±DG(π), taking the sign +

or − so that π̂ is a positive element in R(G).
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Lemma 2.1. Let π be an irreducible smooth representation of G and χ a character

of G. Then χ̂ ⊗ π = χ ⊗ π̂ (where χ ⊗ π denotes the representation of G defined by

(χ⊗ π)(g) = χ(g)π(g)).

Proof. If P = MU is a standandard parabolic subgroup of G and σ is a smooth

representation of M , then Proposition 1.9 of [B-Z] implies

iG,M(χ ⊗ σ) = χ⊗ iG,M (σ), rM,G(χ ⊗ π) = χ ⊗ rM,G(π).

The lemma now follows from the definition of DG. �

Let Π(P,AM ) = {rM(α) | α ∈ Π − ΠM} denote the set of simple roots for the

pair (P,AM ). We have a W -invariant inner product 〈·, ·〉 : a∗ × a∗ → R. As in [Sil],

identifying a∗
M with the subspace ι(a∗

M) ⊂ a∗, we set

(aM)∗+ = {x ∈ a∗
M | 〈x, α〉 > 0, ∀α ∈ Π(P,AM )},

(aM)∗− = {x ∈ a∗
M | 〈x, α〉 < 0, ∀α ∈ Π(P,AM )},

+ā∗
M = {x ∈ a∗

M | x =
∑

α∈Π(P,AM )

cαα, cα ≥ 0}.

.

A set of Langlands data for G is a triple (P, ν, τ ) with the following properties: (1)

P = MU is a standard parabolic subgroup of G, (2) ν ∈ (aM)∗−, and (3) τ is (the

equivalence class of) an irreducible tempered representation of M .

We now state the Langlands classification (cf. [B-W],[Sil]):

Theorem 2.2 (The Langlands classification). Suppose (P, ν, τ ) is a set of Langlands

data for G. Then the induced representation iG,M (exp ν ⊗ τ ) has a unique irreducible

subrepresentation, which we denote by L(P, ν, τ ). Conversely, if π is an irreducible

admissible representation of G, then there exists a unique (P, ν, τ ) as above such that

π ∼= L(P, ν, τ ).

This theorem describes the Langlands classification in the subrepresentation set-

ting. It can also be formulated in the quotient setting, in which case ν ∈ (aM )∗+. We
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work in the subrepresentation setting for technical reasons: if π ∼= L(P, ν, τ ), then

exp ν ⊗ τ ≤ rM,G(π).

3. A combinatorial lemma

In this section, we prove a technical lemma which will play a key role in the proof

of Proposition 5.3.

Let Π = {α1, . . . , αn} (the set of simple roots). As in [B-W], chapter IX, set

F =
∑

Rαi. Then a∗ = z∗ ⊕ F , where z∗ = {x ∈ a∗ | 〈x, α〉 = 0, ∀α ∈ Π}. Define

β1, . . . , βn ∈ F by 〈βi, αj〉 = δij. Then F =
∑

Rβi. More generally, if I ⊂ {1, . . . , n},

then a∗ = z∗ +
∑

i 6∈I Rβi +
∑

i∈I Rαi. Note that if M is the standard Levi factor with

ΠM = {αi | i ∈ I}, then iM(a∗
M) = z∗ +

∑
i 6∈I Rβi. The set of simple roots Π is a basis

of an abstract root system in F . Let

F̄+ = ā∗
+ ∩ F = {x ∈ F | 〈x, α〉 ≥ 0, ∀α ∈ Π}.

Lemma 3.1. Let x, y ∈ F̄+ and w ∈ W with w 6= 1. Then 〈wx, y〉 ≤ 〈x, y〉.

Proof. That 〈wx−x, y〉 ≤ 0 is an immediate consequence of Proposition 18 in section

1.6, chapter 5 [Bou]. �

Let W M,A = {w ∈ W |wα > 0 for all α ∈ ΠM}.

Lemma 3.2. Let P = MU be a standard parabolic subgroup of G. Suppose the simple

roots of G are labeled so that ΠM = {αk+1, . . . , αn}. Let x = c1β1 + · · · + ckβk +

ck+1αk+1 + · · · + cnαn ∈ F , with c1, . . . , ck < 0, ck+1, . . . , cn ≥ 0. Let w ∈ W M,A,

w 6= 1. If wx = d1β1 + · · · + dkβk + dk+1αk+1 + · · · + dnαn, then di 6= ci, for some

i ∈ {1, . . . , k}.

Proof. Let

w =




a11 · · · a1n

...
...

an1 · · · ann



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be the matrix for the action of w with respect to the basis β1, . . . , βk, αk+1, . . . , αn.

Observe that for i, j ∈ {1, . . . , k}, we have

〈wβi, βj〉 = 〈a1iβ1 + · · · + akiβk + a(k+1)iαk+1 + · · · + aniαn, βj〉

= a1i〈β1, βj〉 + · · · + aki〈βk, βj〉.

Also, for j ∈ {1, . . . , k}, l ∈ {k + 1, . . . , n}, we have

〈wαl, βj〉 = 〈a1lβ1 + · · · + aklβk + a(k+1)lαk+1 + · · · + aniαn, βj〉

= a1l〈β1, βj〉 + · · · + akl〈βk, βj〉.

Let

A =




a11 · · · a1n

...
...

ak1 · · · akn


 , B =




〈β1, β1〉 · · · 〈β1, βk〉
...

...

〈βk, β1〉 · · · 〈βk, βk〉




and

D =




〈wβ1, β1〉 · · · 〈wβk, β1〉 〈wαk+1, β1〉 · · · 〈wαn, β1〉
...

...
...

...

〈wβ1, βk〉 · · · 〈wβk, βk〉 〈wαk+1, βk〉 · · · 〈wαn, βk〉


 .

Then, noting B = BT , we have BA = D. Now, consider wx:

wx =




a11 · · · a1n

...
...

ak1 · · · akn

...
...

an1 · · · ann







c1

...

ck

...

cn




=


A

∗







c1

...

ck

...

cn




=




A




c1

...

cn




∗




,

with the entries for ∗ left unspecified as they do not play a role in what follows. That

is, if wx = d1β1 + · · · + dkβk + dk+1αk+1 + · · · + dnαn, then



d1

...

dk


 = A




c1

...

cn


 = B−1D




c1

...

cn



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(noting that B is invertible because β1, . . . , βk are linearly independent and 〈·, ·〉 is

nondegenerate).

We would like to show B−1D




c1

...

cn


 6=




c1

...

ck


 , or equivalently, D




c1

...

cn


 6= B




c1

...

ck


 .

We have

D




c1

...

cn


 =




c1〈wβ1, β1〉 + · · · + ck〈wβk, β1〉 + ck+1〈wαk+1, β1〉 + · · · + cn〈wαn, β1〉
...

c1〈wβ1, βk〉 + · · · + ck〈wβk, βk〉 + ck+1〈wαk+1, βk〉 + · · · + cn〈wαn, βk〉




and (using B = BT )

B




c1

...

ck


 =




c1〈β1, β1〉 + · · · + ck〈βk, β1〉
...

c1〈β1, βk〉 + · · · + ck〈βk, βk〉


 .

Therefore, the ith entry of B




c1

...

ck


− D




c1

...

cn


 is equal to

c1〈β1, βi〉 + · · · + ck〈βk, βi〉

− [c1〈wβ1, βi〉 + · · · + ck〈wβk, βi〉 + ck+1〈wαk+1, βi〉 + · · · + cn〈wαn, βi〉]

= c1〈β1 − wβ1, βi〉 + · · · + ck〈βk − wβk, βi〉 − ck+1〈wαk+1, βi〉 − · · · − cn〈wαn, βi〉.

Now, w ∈ W M,A implies that for j = k + 1, . . . , n we have wαj > 0 and hence

〈wαj , βi〉 ≥ 0. Lemma 3.1 tells us that for j = 1, . . . , k, 〈βj − wβj, βi〉 ≥ 0. By

assumption, c1, . . . , ck < 0 and −ck+1, . . . ,−cn ≤ 0, so the ith entry is ≤ 0. Now,

fix i ∈ {1, . . . , k} such that βi − wβi 6= 0. Since the inner product is symmetric and

W -invariant, we have

0 < 〈βi − wβi, βi −wβi〉 = 〈βi, βi〉 − 2〈wβi, βi〉 + 〈βi, βi〉 = 2〈βi − wβi, βi〉.
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Therefore, the ith entry is < 0, from which the lemma follows. �

4. Criterion for temperedness

In this section, we give a variation of the Casselman criterion for temperedness

(cf. [Cas],[W]). The arguments done later in this paper use exponents in a∗ (rather

than the different a∗
M which arise) to facilitate comparison. Thus, in this section,

we reformulate the Casselman criterion in terms of exponents in a∗ (Corollary 4.4)

to set up these later arguments. Our starting point is the Cassleman criterion as

formulated in Proposition III.2.2. of [W].

Let π be an irreducible admissible representation of G. Let

Mmin(π) = {L standard Levi | rL,G(π) 6= 0 but rN,G(π) = 0 for all N < L}.

Let us define

Exp(π) = {ι(µ) | expµ⊗ ρ ≤ rL,G(π) for some ρ with ωρ unitary and L ∈ Mmin(π)}

(where ωρ denotes the central character).

We use ExpM (π) for the exponents of rM,G(π) defined by Waldspurger in section

I.3 of [W]; ExpR
M (π) for their real parts.

Lemma 4.1. Let π be an irreducible representation and L ∈ Mmin(π). If M > L

a standard Levi factor and ξ ∈ ExpR
L(π), then rL

M(ξ) ∈ ExpR
M (π) (where rL

M denotes

restriction from a∗
L to a∗

M), and every µ ∈ ExpR
M (π) has this form (for some L ∈ Mmin

and ξ ∈ ExpR
L(π)).

Proof. This follows from Proposition 1.9(f) of [B-Z] and (Jacquet) restriction in

stages. �
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Lemma 4.2. Let A be the Cartan matrix

A =




〈α1, α1〉 . . . 〈α1, αn〉
...

...

〈αn, α1〉 . . . 〈αn, αn〉


 .

Then,

A−1 =




〈β1, β1〉 . . . 〈βn, β1〉
...

...

〈β1, βn〉 . . . 〈βn, βn〉


 .

In particular, the entries of A−1 are nonnegative.

Proof. The characterization of A−1 is an immediate consequence of 〈αi, βj〉 = δij; the

non-negativity of its entries is Lemma IV.6.2 of [B-W]. �

Lemma 4.3. Condition (ii) (for standard parabolics) in Proposition III.2.2 of [W]

holds if and only if every exponent ν ∈ Exp(π) satisfies ν ∈ +ā∗.

Proof. We check both directions. We remark that both condition (ii) from [W] and

the condition here of lying in +ā∗ require that the z∗ component be zero.

(⇐): Let P = LU be a standard parabolic subgroup, with ΠL = {αi | i ∈ IL}. If we

do not have L ≥ M for some M ∈ Mmin(π), then rL,Gπ = 0 and there is nothing to

prove. Thus, we assume L ≥ M for some M ∈ Mmin(π).

Let µ ∈ a∗
L ∈ ExpR

L(π). By Lemma 4.1, µ = rM
L (ξ) for some ξ ∈ ExpR

M (π). Then

ν = ιM(ξ) ∈ a∗ ∈ Exp(π). Note that

rL(ν) = rL ◦ ιM(ξ) = rM
L ◦ rM ◦ ιM (ξ) = rM

L (ξ) = µ.

Write ν = z +
∑n

i=1 ciαi. Then,

µ = rL(ν) = rL(z) +

n∑

i=1

cirL(αi) = rL(z) +
∑

i 6∈IL

ciα
L
i ,
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where αL
i = rL(αi) (a simple root in Π(P,AL) when i 6∈ IL). Of course, µ ∈ +ā∗

L is

then equivalent to

ci ≥ 0 for all i 6∈ IL.

On the other hand, the assumption ν ∈ +ā∗ is equivalent to ci ≥ 0 for all i, from

which it immediately follows that µ ∈ +ā∗
L

(⇒): Consider ν ∈ Exp(π). Then ν ∈ ιM (a∗
M) for some M ∈ Mmin. In particular,

ν ∈ spani 6∈IM
{βi}. Write

ν =
n∑

i=1

ciαi =
∑

i 6∈IM

diβi.

Note that our goal is to show ci ≥ 0 for all i. If one has MΠ−{αi} ≥ L for some

L ∈ Mmin(π), then one can use the same basic argument as above to show ci ≥ 0.

However, this need not hold for all i. In particular, an argument like that above will

tell us ci ≥ 0 for all i 6∈ IM ; we need to extend this to show ci ≥ 0 for all i.

If we let

A =




〈α1, α1〉 . . . 〈α1, αn〉
...

...

〈αn, α1〉 . . . 〈αn, αn〉


 and B =




〈β1, β1〉 . . . 〈β1, βn〉
...

...

〈βn, β1〉 . . . 〈βn, βn〉


 ,

then (cf. Lemma 4.2)

A




c1

...

cn


 =




d1

...

dn


 and B




d1

...

dn


 =




c1

...

cn


 ,

noting that di = 0 for i ∈ IM . For convenience and without loss of generality, suppose

the roots are ordered so that IM = {m + 1, . . . , n}. Let

C1 =




c1

...

cm


 , C2 =




cm+1

...

cn


 and D1 =




d1

...

dm


 .
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We may then write (block matrices)


 C1

C2


 =


 B1,1 B1,2

B2,1 B2,2




 D1

0


 ,

so that C2 = B2,1D1. Now,


 D1

0


 =


 A1,1 A1,2

A2,1 A2,2




 C1

C2




implies D1 = A1,1C1 + A1,2C2 and therefore

C2 = B2,1D1 = B2,1A1,1C1 + B2,1A1,2C2.

Thus, (I − B2,1A1,2)C2 = B2,1A1,1C1. It follows from BA = I that I − B2,1A1,2 =

B2,2A2,2. As A2,2, B2,2 are invertible (from linear independence considerations, e.g.),

this gives

C2 = A−1
2,2B

−1
2,2B2,1A1,1C1.

Again, it follows from BA = I that B2,1A1,1 = −B2,2A2,1. Therefore,

C2 = −A−1
2,2A2,1C1.

Since A2,2 is the Cartan matrix for a sub-root system, Lemma 4.2 tells us A−1
2,2 has

nonnegative entries. Also, since A2,1 contains no diagonal entries, −A2,1 also has

nonnegative entries. It now follows from c1, . . . , cm ≥ 0 that cm+1, . . . , cn ≥ 0, as

needed. �

Corollary 4.4. Let π be an irreducible admissible representation of G. Suppose that

the central character of π is unitary. Then π is tempered if and only if every exponent

ν ∈ Exp(π) satisfies ν ∈ +ā∗.
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5. Multiplicity one in the Jacquet module of a standard module

In this section,we prove the main technical result needed in this paper: if (P, ν, τ )

is a set of Langlands data, then exp ν ⊗ τ is the only irreducible subquotient rM,G ◦

iG,M(exp ν ⊗ τ ) with its central character, and occurs with multiplicity one.

Let θ be an irreducible representation of M . Let us write |ωθ| = exp νθ, νθ ∈ a∗
M ,

where ωθ is the central character of θ. Then, we may (uniquely) write θ as exp νθ ⊗ θ′

with νθ ∈ a∗
M and θ′ having unitary central character. We call ι(νθ) the central

exponent for θ (a slight abuse of terminology, as it would be a little more natural to

call νθ the central exponent). Note that exp ν ⊗ τ has central exponent ι(ν).

Let Exp denote the set of exponents defined in the previous section.

Lemma 5.1. Let θ be a representation of M and χ a character of M . Then

Exp(χ ⊗ θ) = ι(νχ) + Exp(θ).

Proof. It follows from rL,M(χ ⊗ θ) = χ ⊗ rL,M(θ) that

expµ ⊗ ρ ≤ rL,M(θ) ⇔ χ · expµ ⊗ ρ ≤ rL,M(χ⊗ θ).

Write χ = exp νχ ⊗ χu, where χu is a unitary character. Then

χ · expµ ⊗ ρ = exp νχ · expµ ⊗ χuρ = exp(νχ + µ) ⊗ χuρ

and the claim follows. �

If L < M is a standard Levi factor, then

a∗
L = ιLM (a∗

M) ⊕ (aM
L )∗,

where ιLM denotes the embedding ιLM : a∗
M → a∗

L and (aM
L )∗ is the kernel of the

restriction rL
M : a∗

L → a∗
M (see section 5 of [A2] for details).
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Lemma 5.2. Let L < M . Let θ be an irreducible representation of M and µ ∈ a∗
L

with ι(µ) ∈ Exp(θ). Write

µ = µM + µM
L , µM ∈ ιLM (a∗

M), µM
L ∈ (aM

L )∗.

If ωθ is unitary, then µM = 0. In general, µM = ιLM (νθ).

Proof. Suppose ωθ is unitary. Then |ωθ| = 1. According to [Cas], page 45,

|ωθ(a)| = expµ(a), a ∈ AM .

Since µM
L (a) = 0, a ∈ AM , it follows that µM (a) = 0, for all a ∈ AM . Therefore,

µM = 0.

Now, consider the general case. Write θ = exp νθ ⊗ θ′, with θ′ having unitary

central character. Suppose µ ∈ a∗
L satisfies ι(µ) ∈ Exp(θ). Lemma 5.1 tells us

µ = ιLM(νθ) + µ′, for some µ′ ∈ a∗
L such that ι(µ′) ∈ Exp(θ′). Then

µ = ιLM (νθ) + µ′
M + (µ′)M

L .

Since µ′
M = 0 and νθ ∈ a∗

M , it follows that µM = ιLM (νθ). �

Proposition 5.3. Let π = L(P, ν, τ ). Then exp ν ⊗ τ is the unique irreducible

subquotient of rM,G ◦ iG,M(exp ν ⊗ τ ) having central exponent ι(ν), and occurs with

multiplicity one.

Proof. Let F =
∑n

i=1 Rαi =
∑n

i=1 Rβi be as in section 3, so that a∗ = z∗⊕F . If µ ∈ a∗,

we denote by µ0 the orthogonal projection of µ onto F . Let IM = {i | αi ∈ ΠM}. If

µ ∈ a∗, then we can write

µ = z +
∑

i 6∈IM

ciβi +
∑

i∈IM

ciαi,

where z ∈ z∗. In particular, if µ ∈ Exp(exp ν ⊗ τ ), then

z +
∑

i 6∈IM

ciβi = ι(ν),
∑

i∈IM

ciαi ∈ Exp(τ ).
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Since ν ∈ (aM )∗−, we have ci < 0 for i 6∈ IM . Corollary 4.4 implies ci ≥ 0 for i ∈ IM .

Therefore, µ0 satisfies the conditions of Lemma 3.2.

For µ = z +
∑

i 6∈IM
ciβi +

∑
i∈IM

ciαi, let pM (µ) =
∑

i 6∈IM
ciβi. If θ is an irreducible

representation of M and µ ∈ Exp(θ), then Lemma 5.2 tells us ι(νθ)
0 = pM (µ).

It follows from the results of Bernstein-Zelevinsky and Casselman (cf. Lemma 2.12

[B-Z] or section 6 [Cas]) that

Exp (iG,M(exp ν ⊗ τ )) ⊆ W M,A · Exp(exp ν ⊗ τ ).

We now combine the above observations. Let θ ≤ rM,G ◦ iG,M(exp ν ⊗ τ ) be irre-

ducible. We have

Exp(θ) ⊆ Exp (iG,M(exp ν ⊗ τ )) ⊆ W M,A · Exp(exp ν ⊗ τ )

⇓

CentExp(θ)0 ∈
{
pM

(
W M,A · Exp(exp ν ⊗ τ )

)}
,

where CentExp denotes the (M -)central exponent. Thus, to show that exp ν⊗τ is the

unique irreducible subquotient of rM,G ◦ iG,M(exp ν⊗τ ) having central exponent ι(ν),

it suffices to show that pM (wµ) 6= ι(ν)0 for any µ ∈ Exp(exp ν ⊗ τ ) and w ∈ W M,A

having w 6= 1. This follows from Lemma 3.2. �

Corollary 5.4. Let π = L(P, ν, τ ). Then exp ν ⊗ τ is the unique irreducible subquo-

tient of rM,G ◦ iG,M (exp ν ⊗ τ ) having central character exp ν ⊗ ωτ .

Remark 5.5. Proposition 5.3 and Corollary 5.4 also hold for O(2n,F )–this is es-

sentially the same combinatorial statment as for Sp(2n,F ) or SO(2n + 1, F ). In

particular, all three have the same Weyl group, the same concrete realization of the

Langlands classification (cf. [B-J1] and the appendix to [B-J2]), and the same relevant

double-coset representatives for the Weyl group (cf. Lemma 3.6 [Jan3]).
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6. The dual Langlands classification

In this section, we give the main result in this paper–the dual Langlands classifi-

cation (cf. Theorem 6.3).

If θ is an irreducible representation of G with unitary central character, we say that

θ is anti-tempered if every exponent ν ∈ Exp(θ) satisfies ν ∈ −a∗
− (i.e., it satisfies

the Casselman criterion with the inequalities reversed–cf. Corollary 4.4). Note that

this is equivalent to having θ̂ tempered.

Let P = MU be a standard parabolic subgroup of G. If w0 ∈ W M,A is the longest

element, then L = w0(M) is also the Levi factor of a standard parabolic subgroup Q

of G. Further, if τ is an irreducible tempered representation of M , then θ = w0τ̂ is

an irreducible anti-tempered representation of L.

Lemma 6.1. If ν ∈ (aM)∗−, then µ = w0ν ∈ (aL)∗+.

Proof. Let ν ∈ (aM)∗− and µ = w0ν. If γ ∈ Π(Q,AL), then γ = rL(αj) for some

αj ∈ Π − ΠL. Proposition 1.1.4 of [Cas] implies w−1
0 (αj) < 0. It follows that

w−1
0 (αj) =

∑n
i=1 ciαi, ci ≤ 0. Then

w−1
0 (γ) = rM

(
n∑

i=1

ciαi

)
=

∑

α∈Π(P,AM )

cαα,

where cα ≤ 0 and not all cα are equal to 0. By assumption, 〈ν, α〉 < 0 for all

α ∈ Π(P,AM). It follows that

〈µ, γ〉 = 〈w−1
0 µ,w−1

0 γ〉 = 〈ν,
∑

α∈Π(P,AM )

cαα〉 =
∑

α∈Π(P,AM )

cα〈ν, α〉 > 0,

so µ ∈ (aL)∗+. �

Lemma 6.2. Let π = L(P, ν, τ ). Then π̂ is the unique irreducible subrepresentation

of iG,L(expµ ⊗ θ), with L, µ, θ as above.
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Proof. We have exp ν ⊗ τ ≤ rM,G(π). Corollary 5.4 tells us that exp ν ⊗ τ is the

unique irreducible subquotient of rM,G(π) having central character expν ⊗ ωτ . Let

ZM denote the center of M and ZL = w0(Z). Combining Lemma 2.1 and Théorème

1.7 of [Aub], we have

expµ ⊗ θ = w0(exp ν ⊗ τ̂ ) = w0
̂(exp ν ⊗ τ ) ≤ rL,G(π̂),

and this is the unique irreducible subquotient of rL,G ◦ iG,L(expµ⊗ θ) having central

character expµ ⊗ ωθ.

We now need the following standard result ([Cas], [Gus], [W]): If (ρ, V ) is an

admissible representation of L and ω is a character of ZL, write

Vω = {v ∈ V | there is an n ∈ N such that [ρ(z) − ω(z)]nv = 0 for all z ∈ ZL}.

Then V = ⊕ωVω as a direct sum of L-modules. In particular, let ρ = rL,G(π̂) and

λ = expµ⊗ωθ . Then Vλ is just the L-module expµ⊗θ (as it is the unique subquotient

of rL,G(π̂) having this central character), so appears as a direct summand in rL,G(π̂).

The lemma now follows from Frobenius reciprocity. �

Theorem 6.3 (The dual Langlands classification). Let Q = LU be a standard par-

abolic subgroup of G, µ ∈ (aL)∗+, and θ an anti-tempered representation of L. Then

the induced representation iG,L(exp ν ⊗ θ) has a unique irreducible subrepresentation,

which we denote by DL(Q,µ, θ). Conversely, if π is an irreducible admissible repre-

sentation of G, there is a unique triple (Q,µ, θ), with Q a standard parabolic subgroup,

µ ∈ (aL)∗+ and θ an anti-tempered representation of L, such that π ∼= DL(Q,µ, θ).

Further, suppose that π̂ = L(P, ν, τ ) in the Langlands classification. If P = MU

and w0 ∈ W M,A is the longest element, we have L = w0(M), µ = w0ν, and θ = w0τ̂ .

Proof. If (P, ν, τ ) is the Langlands data for π̂, it follows immediately from Lemma 6.2

that (Q,µ, θ) is the dual Langlands data for π. This shows the existence of dual

Langlands data. Conversely, if one starts with (Q,µ, θ) is dual Langlands data for
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π, Lemma 6.2 implies (P, µ, τ ) is Langlands data for π̂. The uniqueness of dual

Langlands data then follows from the uniqueness of Langlands data. The relation-

ship given between the dual Langlands data for π and the Langlands data for π̂ is

immediate from the above discussion. �

Corollary 6.4. Let π = DL(Q,µ, θ). Then the multiplicity of π in the induced

representation iG,L(exp ν ⊗ θ) is one.

Proof. This follows from the corresponding result for the Langlands classification and

the previous theorem. �

Remark 6.5. By Remark 5.5, we know Corollary 5.4 holds for O(2n,F ). Further,

by [Jan3], we have a duality operator for O(2n,F ) with the properties from [Aub]

Théorème 1.7. It is then a straightforward matter to check that Lemma 6.2 and

Theorem 6.3 hold for O(2n,F ) as well.

We close by considering the case of general linear groups. In this case, the dual

Langlands classification, suitable interpreted, is the same as the Zelevinsky classifi-

cation.

We start by reviewing some notation regarding general linear groups, most of which

is taken from [Z]. If π1, π2 are admissible representations of GL(k1, F ), GL(k2, F ),

respectively, we define π1 × π2 = iG,M (π1 ⊗ π2), where M ∼= GL(k1, F ) × GL(k2, F )

is the Levi factor of a standard parabolic subgroup of G = GL(k1 + k2, F ). Let

ν = |det|. Let ρ be an irreducible supercuspidal representation of GL(m,F ) and

k ≥ 0 an integer. The set ∆ = [ρ, νkρ] = {ρ, νρ, . . . , νkρ} is called a segment. The

induced representation ρ× νρ× · · ·× νkρ has a unique irreducible subrepresentation,

which we denote by 〈∆〉, and a unique irreducible quotient, which we denote by δ(∆).

For GL(n,F ), the Aubert involution coincides with the Zelevinsky involution (cf.

Théorème 2.3 [Aub]) and δ̂(∆) = 〈∆〉. The representation δ(∆) is square integrable

if the segment is balanced, i.e., of the form ∆ = [ν−kρ, νkρ], where ρ is unitary and
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k is a half-integer. In addition, if τ is a tempered representation of GL(n,F ), then

τ ∼= δ1 × · · · × δs, for some square integrable representations δ1, . . . , δs; this follows

from the irreducibility of induced-from-unitary representations of GL(n,F ).

The above implies the following description of the dual Langlands classification for

GL(n,F ). Suppose ∆1,∆2, . . . ,∆k are balanced segments and α1 ≥ · · · ≥ αk are real

numbers. Then the induced representation

να1〈∆1〉 × να2〈∆2〉 × · · · × ναk〈∆k〉

has a unique irreducible subrepresentation and any irreducible admissible represen-

tation of GL(n,F ) can be obtained in this way. If αi = αj, then ναi〈∆i〉 and ναj〈∆j〉

may be interchanged; up to such permutations, the inducing data is unique.

Next, we review the Zelevinsky classification (cf. [Z]). We say that the segments

∆1 and ∆2 are linked if ∆1 6⊂ ∆2, ∆2 6⊂ ∆1 and ∆1 ∪ ∆2 is also a segment. Suppose

∆1 and ∆2 are linked and ∆1 = [ρ1, ν
k1ρ1],∆2 = [ρ2, ν

k2ρ2]. If ρ2 = ν`ρ1, for some

` > 0, we say that ∆1 precedes ∆2.

Let ∆1,∆2, . . . ,∆k be segments. Suppose for each pair of indices i < j, ∆i does

not precede ∆j. Then the representation 〈∆1〉 × 〈∆2〉 × · · · × 〈∆k〉 has a unique

irreducible subrepresentation which we denote by 〈∆1,∆2, . . . ,∆k〉. Any irreducible

admissible representation of GL(n,F ) is isomorphic to some representation of the

form 〈∆1,∆2, . . . ,∆k〉 and the choice of ∆1,∆2, . . . ,∆k is unique up to a permutation.

Now, we consider the dual Langlands classification again. Suppose ∆1,∆2, . . . ,∆k

are balanced segments and α1 ≥ · · · ≥ αk are real numbers. Let ∆′
i = ναi∆i. It

is a straightforward matter to check that 〈∆′
1〉, . . . , 〈∆′

k〉 are Zelevinsky data, i.e.,

∆′
1, . . . ,∆

′
k satisfy the do-not-precede condition. Conversely, if we start with Zelevin-

sky data 〈∆′
1〉, . . . , 〈∆′

k〉, we can write ∆′
i = ναi∆i, where ∆i is balanced and αi is a

real number. Let p be a permutation of {1, 2, . . . , k} such that αp(1) ≥ · · · ≥ αp(k).

Then ναp(1)δ(∆p(1)), . . . , ν
αp(k)δ(∆p(k)) form Langlands data, so ∆′

p(1), . . . ,∆
′
p(k) also
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satisfy the do-not-precede condition. It follows that

〈∆′
1,∆

′
2, . . . ,∆

′
k〉 = 〈∆′

p(1),∆
′
p(2), . . . ,∆

′
p(k)〉.

The above discussion shows that the dual Langlands classification for GL(n,F ), suit-

ably interpreted, is the same as the Zelevinsky classification.
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