Main Content
Lindsey-Kay Lauderdale
Lindsey-Kay Lauderdale, Associate Professor, Director of Undergraduate Studies
Ph.D. in Mathematics, University of Florida
Research Interests
Algebraic graph theory, enumerative combinatorics, extremal graph theory, group theory, and their applications.
Publications
1. Chapter 15: Ring Theory. Mathematics in Cyber Research. Edited By P. L. Goethals, N. M. Scala, and D. T. Bennett. Chapman and Hall/CRC, 2022. ISBN 9780367374679.
2. Density results for Graovac-Pisanski's distance number (with L. Abrams). Ars Math. Contemp., 21(2), 1--15, 2021.
3. Vertex-minimal graphs with nonabelian 2-group symmetry (with J. Zimmerman). J. Algebraic Combin., 54, 205--221, 2021.
4. Vertex-minimal planar graphs with cyclic 2-group symmetry (with K. Archer, R. Darby, A. Linson, M. K. Maxfield, C. Schmidt, and P. T. Tran). J. Algebraic Combin., 54, 1--15, 2021.
5. Vertex-minimal planar graphs with prescribed automorphism group (with C. J. Jones, S. E. Lubow, and C. J. Triplitt). J. Algebraic Combin., 53, 355--367, 2021.
6. Enumeration of cyclic permutations in vector grid classes (with K. Archer). J. Comb., 11(1), 203--230, 2020.
7. Vertex-minimal graphs with dihedral symmetry II (with C. Graves). Discrete Math., 342(5), 1378--1391, 2019.
8. On the fixing sets of dihedral groups. Discrete Math., 342(2), 520--528, 2019.
9. On the number of lambda-unimodal involutions (with K. Archer, A. Gay, C. M. King, T. Lupo, V. Germany, and F. L. Rossi). Sem. Lothar. Combin., 80B, Article #66, 12pp., 2018.
10. Smallest graphs with given generalized quaternion automorphism group (with C. Graves and S. Graves). J.Graph Theory, 87(4), 430--442, 2018.
11. Unimodal permutations and almost-increasing cycles (with K. Archer). Electron. J Combin., 24(3), #P3.36, 2017.
12. Vertex-minimal graphs with dihedral symmetry I (with C. Graves and S. Graves). Discrete Math., 340, 2573--2588, 2017.
13. On the number of maximal subgroups in a finite group. J. Group Theory, 18(4), 535--551, 2015.
14. Lower bounds on the number of maximal subgroups in a finite group. Arch. Math., 101(1), 9--15, 2013.

